Finiteness of Arithmetic Hyperbolic Reflection Groups

نویسندگان

  • IAN AGOL
  • KEVIN WHYTE
چکیده

We prove that there are only finitely many conjugacy classes of arithmetic maximal hyperbolic reflection groups.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On ground fields of arithmetic hyperbolic reflection groups

Using authors’s methods of 1980, 1981, some explicit finite sets of number fields containing ground fields of arithmetic hyperbolic reflection groups are defined, and good bounds of their degrees (over Q) are obtained. For example, degree of the ground field of any arithmetic hyperbolic reflection group in dimension at least 6 is bounded by 56. These results could be important for further class...

متن کامل

Mikhail v. Belolipetsky List of Publications

[1] Estimates for the number of automorphisms of a Riemann surface, Sib. Math. J. 38 (1997), no. 5, 860–867. [2] On Wiman bound for arithmetic Riemann surfaces, with Grzegorz Gromadzki, Glasgow Math. J. 45 (2003), 173–177. [3] Cells and representations of right-angled Coxeter groups, Selecta Math., N. S. 10 (2004), 325–339. [4] On volumes of arithmetic quotients of SO(1,n), Ann. Scuola Norm. Su...

متن کامل

Finiteness of arithmetic Kleinian reflection groups

We prove that there are only finitely many arithmetic Kleinian maximal reflection groups. Mathematics Subject Classification (2000). Primary 30F40; Secondary 57M.

متن کامل

Arithmetic Hyperbolic Reflection Groups

A hyperbolic reflection group is a discrete group generated by reflections in the faces of an n-dimensional hyperbolic polyhedron. This survey article is dedicated to the study of arithmetic hyperbolic reflection groups with an emphasis on the results that were obtained in the last ten years and on the open problems.

متن کامل

Arithmeticity of complex hyperbolic triangle groups

Complex hyperbolic triangle groups, originally studied by Mostow in building the first nonarithmetic lattices in PU(2, 1), are a natural generalization of the classical triangle groups. A theorem of Takeuchi states that there are only finitely many Fuchsian triangle groups that determine an arithmetic lattice in PSL2(R), so triangle groups are generically nonarithmetic. We prove similar finiten...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006